IntelliGrid Architecture

 

 

Home

Parent Menu

Project Overview
Objectives
Methodology
Guidelines
Recommendations

Same Level Menu

Industry Trends
IntelliGrid Scope
IntelliGrid Issues
Architecture Defined
Need for Architecture

Child Menu

 

Search IntelliGrid Site

Questions/Comments

Questions

 

Responses

 

 

Adoption of Advanced Tools and Methods

In any vision of the future energy industry, operations will be substantially more complex than today. This complexity must be managed on a variety of levels, including business relationships, regulatory processes, and technology integration. An architecture must account for these relationships and complexity. To meet the challenges posed by this project, IntelliGrid Architecture team found it necessary to innovate tools and methods to capture the complexity of future energy industry operations. This required adopting both systems engineering methods and emerging standards for representing high-level architectures. As a result, IntelliGrid Architecture project introduces necessary terms and language emerging from architecture development and systems engineering communities.

IntelliGrid Architecture is not an endorsement of specific methods, tools, or products

The tools and methods used within this project were selected for the purpose of developing IntelliGrid Architecture Framework. The project used systems-engineering-related standards and notations to document relationships and content specific to those relationships. While these standards and methods represent some of the best thinking in the industry, they also continue to mature as a technical discipline. While the specific tools and methods selected for IntelliGrid Architecture project are useful to define architectural level issues, this generally does not constitute an endorsement of these specific tools. The team selected tools and methods on the basis of the best available approach for defining and evaluating large complex distributed computing systems. However, the underlying systems engineering discipline and the community developing the industry-level architectures will continue to mature. The team anticipates further refinement and improvement of the specific methods and notations used within this project and recognizes that there will be additional valid methods for representing industry level architectures.

Systems engineering methods are recommended

The energy service provisioning industries have reached the point where managing technical and business complexity is of paramount importance. The combination of information technology, advanced automation, and communications systems, (collectively referred to as ‘distributed computing’) does not yet have the technical rigor of traditional engineering disciplines, such as electrical, mechanical, or civil engineering. This requires greater discipline than traditionally used in development or implementation of many advanced automation and distributed computing systems. Systems engineering is the discipline of rigorously defining systems through a series of technical steps where design decisions are traceable back to requirements. The IntelliGrid Project recommends that the next steps in the development of an integrated industry architecture follow the disciplines underlying systems engineering.

A Shortage of Integration and Cooperation, Not Technology

An architecture is fundamentally about integrating a wide variety of components into a coherent and beneficial whole. While there is no apparent shortage of base technologies and components that may comprise the future energy system, there is a significant shortage of interoperability and integration between individual technologies and components. Examples of base technologies include computers, communications, and field devices. The free market does well developing these base technologies and stand-alone products but is not as successful when developing infrastructure. This is understandable since the principal goal for vendors of products is differentiation, not uniformity.

There is a particular need in the power industry for an organized infrastructure (standards and technology) that will enable valuable and cost effective interoperation between products developed by different vendors. Without substantial demand (or pull) from the user community, there is little incentive for vendor ‘A’ to facilitate interoperability with products from vendor ‘B’. Instead, vendors must recognize that interoperation is the minimum common requirement and that differentiation will come from feature sets and service offerings.

Infrastructure Required to Move Energy Industry Forward

For a century the electric industry has focused predominantly on developing the electric system that we know today. The system of power plants and power delivery system components comprise a significant energy infrastructure. This electric infrastructure has grown during a century of technical development and is the most capital-intensive of all the public service infrastructures described as utilities. As we look to the future of this system, it will increasingly rely on another infrastructure that must be developed in parallel to move the industry effectively toward the future.

This second infrastructure, the information infrastructure, will be made up of communications technologies, networking technologies, intelligent equipment, and algorithms that can execute increasingly sophisticated operations functions. This second infrastructure can be collectively described as ‘distributed computing’ since it comprises a variety of technologies that enable the sharing of data and controls within intelligent equipment.

 

IntelliGrid Architecture
Copyright EPRI 2004