IntelliGrid Architecture

 

 

Home

Parent Menu

Project Overview
Objectives
Methodology
Guidelines
Recommendations

Same Level Menu

Industry Trends
IntelliGrid Scope
IntelliGrid Issues
Architecture Defined
Need for Architecture

Child Menu

 

Search IntelliGrid Site

Questions/Comments

Questions

 

Responses

 

 

Industry Trends and Project Drivers

Why was the IntelliGrid Project Undertaken?

The IntelliGrid Architecture project was initiated in response to several significant trends and drivers facing the energy services and power delivery industries. Of these trends, five main technical development and business drivers were key forces behind the conception of the IntelliGrid Project. Each key driver, discussed individually below, carries important business and technical implications for the energy services industry as it moves ahead in the areas of advanced automation systems and consumer communications.

Driver 1: Cost effective use of emerging technology

The migration toward effective use of more capable open standards is crucial for a robust power marketplace where hundreds of companies supply products that enable future visions to become a reality. As such, the need for greater, and more effective, use of advanced communications and computing technologies is a key driver in the goal to improve the overall energy system.

The industry, as a whole, must strive to leverage investment in communications and advanced automation by more effectively using installed information automation equipment. Incremental investments in advanced automation and communication infrastructure must support multiple applications today and be extensible for future needs. The industry cannot afford to install single-purpose automation applications and equipment; this inevitably leads to layered, redundant infrastructures.

Designing the IntelliGrid Architecture to address this first driver will help overcome the limitations of proprietary systems and standards that are too narrowly defined. Large collections of disparate systems, sometimes with partially overlapping functionality, can quickly become confusing and unwieldy to manage. By comparison, a well-designed architecture enables initial designs and installations that take into account for future operating scenarios. Developing a cohesive architecture and intelligently using open systems will also assist in more effective life-cycle management of equipment. An overall architecture will help ensure that systems are initially built with a robust set of initial requirements so they are adequately specified and designed for both present and future needs. Architected systems will enable future integration and extensibility so that adding a new function does not require wholesale upgrades or replacement of systems.

Driver 2: Higher levels of integration across traditional boundaries

The need to better integrate advanced systems across traditional boundaries and barriers to create interoperable systems is the second key driver for the IntelliGrid Project. Industry changes are driving tighter operational integration between a greater diversity of business entities - for example, integrating electric energy generation and delivery with consumer premises equipment. In response to this demand, the industry is attempting to dynamically integrate consumer operations through a collection of applications, under the phrase ‘demand response’. A myriad of technical and management issues must be addressed, however, to enable this vision to reach maturity.

Unfortunately, this emerging paradigm will require a massive level of interoperability previously unseen in the power industry. Connecting end consumers to power system operations will call for the integration of millions, or even billions, of devices. Furthermore, administration of such a system presents a huge burden for entities using the equipment.

Development of an industry architecture will result in migration to more uniform systems development, thus easing the burden on systems administrators. More powerful systems administration capabilities (including data management, security, monitoring, and diagnostics) can be designed and built directly into equipment, enabling systems management that can scale to the levels now envisioned for the energy industry.

Driver 3: Infrastructure development and standards coordination

The third IntelliGrid Architecture driver responds to the need for greater coordination and integration of the myriad of standards and infrastructure development initiatives currently taking place across the industry. Standards are necessary for systems to interoperate. However, it is important to note that the standards developed by the industry must also work together or these very standards contribute to the greater problem of balkanized systems on large scales.

Development of an industry-level architecture is a necessary response to the need for greater integration within, and between, standards communities, as well as enterprises. The energy industry has had some painful examples of system installations that failed to scale to large numbers, or to interoperate effectively with systems from different vendors. An architecture will play a critical role in developing and integrating future standards by providing a context and a larger-scoped framework than is normally considered by a single standard. Only in this way can standards hope to interoperate today and scale to address the needs of tomorrow.

Driver 4: Response to new and emerging requirements

The fourth IntelliGrid Architecture driver arises from emerging enterprise-level and industry-level requirements. Since new system requirements appear constantly, any proposed power system must be robust enough to both anticipate and adapt to changing requirements. Many systems that are installed today will eventually require upgrading to meet future requirements. Systems that are inadequately specified to meet future needs are effectively obsolete, even before they are installed.

The IntelliGrid Architecture project has particularly emphasized system requirements to capture scenarios involving future operations. These requirements for future system functions originate from a variety of sources. Most requirements are constructive in nature and seek to add capabilities or integrate with more systems. Other requirement sources, however, can be bluntly described as ‘hostile’. While advances in new communication, embedded computing, and information technologies can provide significant benefits, they also bring with them a serious dark side that must be addressed. System architects designing future energy provisioning systems must be concerned with meeting plausible requirements from an expanding set of hostile sources. In addition to cross-industry integration, requirements are emerging in key areas of policy-based systems management and cyber security. That which was once deemed a reasonable level of protection is inadequate today and for the future.

It should be noted that IntelliGrid Architecture project emphasizes that it is not only important for the energy industry to use new and emerging technology, but also vitally important to address how the technology is implemented.

Driver 5: An industry vision to enable a robust future

Finally, IntelliGrid Architecture project is about creating a vision for the future and embarking on robust and strategic pathways to enable applications envisioned today, as well as those not yet imagined. To operate in a manner unimpeded by traditional thinking, an industry architecture must address the former and enable the latter.

The IntelliGrid Architecture project has created plausible scenarios for future operations that extend beyond traditional energy service provisioning. IntelliGrid Architecture’s reach extends from central generation systems and natural direct energy sources to operations within and between consumer end-use equipment. IntelliGrid Architecture goes beyond the flow of electric energy into end-use equipment to encompass performance and functions both within and peripheral to this equipment. By definition, an architecture at this level must be used for visioning with a scope broad enough to embrace the future effectively. This visioning is not exhaustive within IntelliGrid Architecture, but rather representative of the types of interaction and integration that are both useful and possible within the energy services industry.

 

IntelliGrid Architecture
Copyright EPRI 2004